Understanding software

and how it comes to be

-- @ceejbot

A note about the slides: they're anchor
points to call out important words or to
remind you where we are in the
presentation. You don't have to let them

fill a whole screen if you don't want to.
There aren't any flashing lights or

animations in the presentation, either.

How does this sketch turn into a company that
had thousands of developers, millions of daily
users, and an effect on the entire world? At its
starting point was nothing, and then software
happened, and for about 15 years we had
something. Politics, news, culture-- all
happened because of this software. |I've always
found this amazing-- somebody has an idea,
and this THING appears out of nothingness.

What is software?
How do we bhuild it?
What happens afterward?

Carl Sagan said if you want to make an apple pie, first
you must invent the universe. We aren't going to go that
far back, but we are going to talk about these three
questions. | need to caveat all of this: My answers to
these questions come from a specific perspective-- me

& my career experiences. | am not going to talk about
how it's done at Google or Facebook or other weird
gigantic companies. Going to talk about how software is
built by small to medium sized teams, in the Silicon
Valley, ones that happen to have a lot of ex-Apple
product influence.

This company writes software

— Everyone here contributes to this work.

— Everyone here would benefit from understanding how
we do it.

We write a lot of software.

What is programming anyway?

A traditional answer is that programming is
typing long text files with instructions to
make a computer do things. But when I'm
sitting with my feet up on my desk, or when

I'm pacing around my house muttering, or
when I'm scribbling in that notebook, I'm also
programming. I'm going to go to one of my
favorite essays of all time for another answer.

"[P]Jrogramming properly should be regarded as an
activity by which the programmers form or achieve a
certain kind of insight, a theory, of the matters at hand.
This suggestion is in contrast to what appears to be a
more common notion, that programming should be
regarded as a production of a program and certain other
texts.”

— Peter Naur, "Programming as Theory-Building", 1985

Peter Naur is the Naur of Backus-Naur Form,
which some of the programmers in the
audience might remember, and one of the
designers of Algol, the extremely influential

programming language. This is from a 1985
essay about what he'd learned about how to
write and maintain and operate software. | think
this is right on target. Let's spend a moment
looking at Naur's theory of the program.

https://gist.github.com/onlurking/fc5c81d18cfce9ff81bc968a7f342fb1

Naur says a programmer who has the "theory of the
program” can:

1. Explain how the solution relates to the affairs of the
world that it helps to handle.

2. Explain why each part of the program is what it is.

3. Respond constructively to any demand for a
modification of the program so as to support the
affairs of the world in a new manner.

Naur was writing an an earlier era, so he
talks about single programs here. Today,
we write many programs and connect

them all together into software systems.

What he called "the theory of the
program"” is what | would call "the model
of the system”, but both phrases get at
the heart of the concept.

Software is:

— a lot of text files with instructions to computers (they
matter!)

— that express the authors' understanding of a real-
world problem

— and their solution to that problem

— (and the same for every building block they needed
along the way)

Programming is how we get there.

And this is what we have to
understand to function
effectively. Let's zero in on one

part of that.

To modify software effectively
you must understand:

— the affair of the world
— how the program goes about solving it

The how is mind-bogglingly complex, and very
few people working on any team project
understand the whole thing. Some people
who've been involved with it for a long time

might have a better understanding than others,
but it's possible that nobody understands the
whole thing.

~ Now, | want to back up from the theory a little
bit to talk about those text files. They do matter!

Code is communication with computers and humans.

— Code defines data (nouns) and functions (verbs).

— We name things carefully because the names are
meaningful to humans.

— A program becomes a language of its own. (Hat-tip to
Dijkstra.)

In the jargon of programmers,
every complex system is a
domain-specific language

expressing our understanding
of the problem.

Can you guess what this code is supposed to do?

fn ch() -> Result<usize, Error>
{
let a = a()?;
Ok(a.f(S::H6).1len())
}

The programmers in the
audience all guess that it's
getting the length of something,

pbut they have no idea what
that's the length of, or what any
of the other stuff does.

Can you guess what this code is supposed to do?

/// Count how many hedgies are in our zoo.
fn count_hedgehogs() -> Result<usize, ZoolInventoryError>

{

let animals = fetch_all_animals()?;
let hedgie_list = animals.filter_for(Species: :Hedgehog);

Ok (hedgie_list.len())
}

You probably have a good guess about what this
means, even if you don't know the specific
programming language |I'm using or any
programming language at all. This code
communicates to humans as well as computers.

This might do the exact same thing as the previous
code when run, but this version has an additional
layer of useful meaning, and supports Naur's
theory-building better. (It could lie, and be about
counting numbats, but we try not to do that.)

How do we invent that specific
language to express a
problem?

One thing that | have learned is that no two software
solutions of a problem ever look alike. | know what little |
know about sudoku solving from the talk Cory gave at a
lunch and learn a couple of weeks ago. But if you gave
me and Cory the task of writing a sudoku solver, we'd

write COMPLETELY different programs. If you gave us
the task of writing a solver together, we'd write
something different again. This, btw, is very coo|,
because it says something about human minds that
fascinates me. BUT despite the differences in end result,
both of us would use a similar heuristic to get there.

Understand the real-world problem.
. Analyze it from a software point of view.
. Imagine a solution.

> W0 npp -

. Align a team on the problem, the solution, and the
values that shape the solution.

ol

. Coordinate to express that understanding in code.
. Get feedback and iterate.
7. SHIP IT.

o

There are no secrets here. It works this way
for all problems in software, whether small
or large. Some things are easier when
you're a team of one-- it's easy to align with

yourself. That might be hard with a team of
20, and very hard indeed when your team is
Is larger than Dunbar's number. But this is
how it works. Let's look at a simple example.

1N

Lo

m—

F
—E,

SUBTOTAL
’5% TAX

A0 = J Ty 0 R e o= 0 L 0000 = J O 1 e e

1
1
1
1
1
1
1
1
1

This is Visicalc, the first spreadsheet software
anybody remembers.1977. (The first one was
LANPAR in 1969.) This one invention sold
personal computers to millions of small
businesses and is a huge part of Microsoft's
revenue even today. Spreadsheets ate the
world and run many businesses and are part
of critical workflows everywhere. But
somebody had to make the first one.

— Understand: the workflow of accountants.

— Analyze: These numbers and dates are data a
computer can store; doing arithmetic on columns of
data is something a computer can do.

— Imagine: What if we let people type numbers into
boxes and the computer automatically did the math?

— Coordinate: 2 people in a room!

— Ship: LANPAR was 1969. It didn't ship as we
understand it; but Visicalc did.

The word "spreadsheet”
comes directly from
accounting. Let's go broader,

and apply the process to our
shared endeavor.

Step 1: Understand the real-world problem

— Who are our customers? What are they trying to do?
— This is difficult! Our industry is complex!

— This is why every company needs its subject-matter
experts.

— Everybody involved in designing and implementing the
software does better the more they understand the
people who'll use that software and what they're
trying to do.

Our experts and our customer contact
people keep programmers like me in
touch with who we're making tools for. |
believe | speak for every person on the

engineering team when | say that we all
desperately want more understanding
of our customers. Please! Talk to us!

We share what we understand.

— Writing and reading documents.
— Talking to each other.

Once we understand
something, we don't leap to
writing code. Instead we share

that understanding.

Step 2: Analyze the problem

"To a person with a pencil, everything looks like a
sentence. To a person with a TV camera, everything looks

like an image. To a person with a computer, everything
looks like data."

—Neil Postman, "Five Things We Need to Know About
Technological Change"

Or more succinctly, the
medium Is the message, and
the medium of software is

data.

Study the data

The medium of software is information, or data.
Software collects or generates data, then transforms
that data via rules. The process of describing the data
and writing the rules is what occupies us all day.

Call out some of the nouns we
track in data.

Study what people do with that data

Data by itself is uninteresting. People are using it to do
something. What?

Talk about how our customers
use their data.

Step 3: Ask how automating that with software would
help.

What if... we took a process that take weeks right now,
and made it take minutes instead because software
does the correlation for you?

Marc Andreesen described
this as "software eating the
world", and he should know.

He iInvented the image tag,
and that was enough.

Deepen that computer-focused analysis

What data would the software need to have available?
How will we get that data in a form we can use? What
would we need to do with that data to present useful
information to humans?

Nouns: how we structure our data

long list of nouns: so much data!

Talk about how subject-matter
experts help us identify the
data.

Verbs: how we transform that data

— we receive a lot of data, transform it, and run some
truly complex analyses on it

— we present that information to human beings in a
form designed to help them make important
decisions

— if the software has enough information to say yes, it
does!

— server engineers, Ul engineers, UX designers, data
engineers, and data scientists are all involved in doing
this

This is most of the work, right
here. This is what the software
does, Its verbs.

Step 4: Align a team

— on how you understand the problem
— on the shape of your solution
— on the values you bring to your solution

This Is what our company
meeting does. Every week, we
talk about what our customers

are trying to do and how well
we re solving their problems.

Align technically on the details of our solution

— technical design choices

— the details of how we represent our data

— the building blocks of our software

— what our architecture is

— the values we use to decide among our options

What programming languages
are we using? How are we
storing our data? Of the

countless ways we might write
this, which way are we
picking?

Technical alignment comes from:

— Writing and reading documents.
— Talking to each other.
— Over and over (you don't stop).

Alignment is an ongoing task.
We must constantly
communicate in person and

via desigh documents to make
sure we all understand the
direction we're going.

No one person ever understands the whole thing

Each one of us makes decisions that push the system in
the right direction.

We must be in alignment, or those decisions might be at
Cross-purposes.

Alignment is critical, because
complex software is too big for
any one person.

Step 5: Coordinate to write all
those text files.

DEEP SIGH. This is where all the
trouble is. | could give an entire
presentation on what we know about
this part of it, from books people have

written about their face-plants through
the years. Today I'll stick to sharing a
couple of insights | hope will be useful.

Software development methodologies are under-
studied.

agile, scrum, kanban, waterfall, extreme programming,
spiral, chaos, shape up, behavior-driven, lean, that weird
UML-based thing, slow programming...

Which ones result in measurable,
repeatable productivity
iImprovements? No idea. Nobody has
studied this. There are a few things we

do know, from looking at past projects.
We do know it's a team sport, and that
communication is the core.

"Adding [human] power to a
late software project makes it

later."
— Fred Brooks, The Mythical Man-Month, 1975.

Why? Because communication is, as we nerds like
to say, an order N squared problem. Adding the
10th person to a project team adds 9 new lines of
communication to worry about to everybody. This is
a great book with a lot of great project insight,

including the nugget that if it takes one woman nine
months to deliver a baby, it does not follow that it
would take 9 women one month to do it. And yet
this is something the software industry keeps trying
to do...

We know some things are bad

— micromanagement is awful

— long periods of crunch are actively destructive (and
we have research here)

— projects that never end wear people out

These things fall into the
category of yeah, people are
people.

... and some things are good

— Do write things down.

— Do give people and teams appropriate autonomy.
— Do collaborate on the hardest work.

— Do treat each other with kindness and respect.

— Do create emotional safety, so people can experiment
and learn.

Huh, none of those things are
about process meetings. All of
these things are about enabling

smart people to do their best
work. Strange. Okay, let's talk
process for two more slides.

Most healthy projects do something agile-ish.

— Teams do best when they understand what they're
building, why they're building it, and who they're
building it for.

— Self-organization and autonomy are good.

— Delivering working software frequently turns out to be
good.

— Communicating with the customer a lot is also good.

— The details don't matter much, so long as you're
talking to each other.

The Agile Manifesto is actually
good.

There is no silver bullet."

— Fred Brooks again

There is no single solution that
works for every team in every
moment.

Step 6. Get feedback.

Feedback tells us if we're on target or not. Spoiler: You're
almost never perfectly on target.

Feedback loops are pretty important. We
need to check on how we're doing. We
run retrospectives on incidents and on
projects to see how we're doing with our

processes, and learn from our
experiences. Do more of this? Less of
that? Feedback loops are how learning

happens.

Can't we just get it right the first time?

Nope.

And there's a reason why we
can't.

"The map is not the territory."
— Alfred Korzybski

Your mental model is not reality. The map is
a model of the real world-- the mountain
and the terrain, and the trails across it. The
map tells you a trail is there, but it does not

tell you that the trail was washed out in a
mudslide three days ago. We make our
plans with the information we have, and then
we learn from feedback how we're wrong.

Ways our map is wrong

— We didn't understand the customer's workflow.
— We got our data models wrong.

— We're transforming our data incorrectly (or
inefficiently).

— We figured out a new approach along the way.

— Teams didn't align with each other, and their software
doesn't work together.

— Software we rely on behaves unexpectedly.
— We made mistakes while building things.

All of these things are
guaranteed to happen, mostly
at a small level, but sometimes

with very big concepts. So we
need feedback and do things
to get it.

Feedback from testing

We test for many reasons!

— Does this one piece do what we want it to do?
— Are all the complex pieces working together?

— Does the system do what we expected?
— (Did we get lost despite following our map?)

This is why we have QA.

Feedback from our customers

— Is our system doing what our customers need?

— (Did we reach our planned destination or did our map
lie?)

Step 7. Ship it.

Get it into the hands of customers as soon as it would
be useful to them. Get revenue as soon as you're able.

The reality of Silicon Valley style
software companies is that we all
go into debt immediately to be able

to pay salaries and AWS bills. We
want to get out of that situation as
soon as possible, so the company
can keep doing its thing.

"Ship or die." — Danger, Inc,
internal motto, 2002

Before the team shipped the first
Sidekick in 2002, we said this often to
each other. This over-dramatic motto
came from a maniacal focus on shipping,

getting our product done and out there
Into people's hands. But the catch is that
you re not done when you ship.

What happens after you ship?

More software.

So it's great we shipped
iInstead of dying, but now we
gotta keep the software alive

too. Software is never finished!
We continue to modity it after
we release it to the worla.

Most of the cost of software is maintaining it

Every line of code we write has a maintenance cost:
people, time, thinking.

Those half-million lines of
code represent complexity
that has to be understood.

Living software systems must be operated.

— Software must be run to have meaning!

— Keeping software running is an entire area of
expertise.

— Operations teams tend the software that runs the
software to run the... oh no.

Text files on GitHub don't do
much by themselves.

Living software systems must be changed.

— the world around us changes

— new laws & regulations, new practices from our
customers

— the context in which the software runs changes
— the team maintaining the software changes over time

The software must change in response.

Changing software requires understanding it

Naur's third point: A programmer with the theory of the
system can "respond constructively to any demand for a
modification of the system so as to support the affairs of
the world in a new manner.”

Let's call back to Naur again--
changing software requires
understanding it. The more

complex and voluminous the
software, the more there is to
unaderstana.

Success can bhe a catastrophe.

— we need to scale up from a few customers to many
— we learn where you need to be flexible
— we learn where our models were incomplete

A friend who was at Twitter
during its early years describes
Implementing things that would

get them through the next six
months, by which time they'd
have its replacement ready to go.

All software has a lifespan

— the changes made to it slowly build up like plaque in
arteries

— the software in a big system usually gets replaced in
pieces to keep the system itself working

— the system of software itself lives a long time

Congratulations.

Now do it all over again for the
next product.

You figured out how to eat this
thing with software. You
shipped. Your customers

grumble sometimes, but
they're mostly happy. PHEW.
Let's do a fast recap.

recap: what is software?

— software is, yes, text files with instructions to
computers

— it's also an expression of our understanding of a real-
world problem

— and an expression of our analysis from a computing
perspective

recap: how do we build it?

— there's no perfect answer to this

— building software requires a team to

— align on their understanding

— plan an approach

— coordinate with each other
iterate in response to feedback

recap: what happens after we ship?

software lives on long after we build it
most of its cost is maintenance
you have to understand it to maintain it

eventually we need to replace it

And that's how we turn a
napkin sketch into something

that affects the physical
world.

Questions?

Stop sharing screen now.

